国产女人18毛片水真多18精品, 一区二区三区中文字-亚洲精品女国产, 欧美熟妇老熟妇88888久久久久, 一级毛片免费观看亚洲欧美国产精品,大波霸美女视频,日韩欧美激情V影院,熟女人伦21p,亚洲精品女国产,国产 乱子伦 在线

復(fù)數(shù)的概念教案

時間:2025-12-16 15:45:13 藹媚 教案

復(fù)數(shù)的概念教案

  作為一名教學(xué)工作者,可能需要進行教案編寫工作,借助教案可以更好地組織教學(xué)活動。教案應(yīng)該怎么寫才好呢?以下是小編精心整理的復(fù)數(shù)的概念教案,歡迎閱讀,希望大家能夠喜歡。

復(fù)數(shù)的概念教案

  復(fù)數(shù)的概念教案 1

  一、教學(xué)目標(biāo)

  本課時的教學(xué)目標(biāo)為:

 、俳柚苯亲鴺(biāo)系建立復(fù)平面,掌握復(fù)數(shù)的幾何形式和向量表示;

  ②經(jīng)歷復(fù)平面上復(fù)數(shù)的“形化”過程,理解復(fù)數(shù)與復(fù)平面上的點、向量之間的一一對應(yīng)關(guān)系;

 、鄹形驍(shù)學(xué)的釋義:數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué)、筆者認為,教學(xué)目標(biāo)總體設(shè)置得較為適切,符合三維框架、修改:“掌握復(fù)數(shù)的幾何形式和向量表示”改為“掌握在復(fù)平面上復(fù)數(shù)的點表示和向量表示”。

  二、教學(xué)重點

  本課時的教學(xué)重點為:復(fù)數(shù)的坐標(biāo)表示:幾何形式與向量表示、教學(xué)重點設(shè)置得較為適切,部分用詞表達配合教學(xué)目標(biāo)一并修改、修改:復(fù)數(shù)的坐標(biāo)表示:點表示與向量表示。

  三、教學(xué)難點

  本課時的教學(xué)難點為:復(fù)數(shù)的代數(shù)形式、幾何形式及向量表示的“同一性”、首先,“同一性”說法有待商榷,這個詞有著嚴(yán)格的定義,使用時需謹慎、其次,經(jīng)過思考,復(fù)數(shù)的代數(shù)表示、點表示及向量表示之間的互相轉(zhuǎn)化才是本課時的教學(xué)難點。

  四、教學(xué)過程

 。ㄒ唬╊惐纫

  本環(huán)節(jié)通過實數(shù)在數(shù)軸上的“形化”表示,類比至復(fù)數(shù),引出復(fù)數(shù)的“幾何形式”:復(fù)平面與點、但在設(shè)問中,有一提問值得商榷:實數(shù)的幾何形式是什么?此提問較為唐突,在試講課與正式課中學(xué)生均表示難以理解,原因如下:

 、賹W(xué)生最近發(fā)展區(qū)中未具備“實數(shù)的幾何形式”;

 、趯崝(shù)的幾何形式是教師引導(dǎo)學(xué)生對數(shù)的一種有高度的認識與表達,屬于理解層面、經(jīng)過思考,修改:

 、偃绾巍爱嫛睂崝(shù)?

 、趯W(xué)生直接陳述:我們知道,每一個實數(shù)都有數(shù)軸上唯一確定的一個點和它對應(yīng);反過來,數(shù)軸上的每一個點也有唯一的一個實數(shù)和它對應(yīng)。

  (二)概念新授

  本環(huán)節(jié)給出復(fù)平面的定義及相關(guān)概念,并且?guī)椭鷮W(xué)生形成復(fù)數(shù)與復(fù)平面上點兩者間的一一對應(yīng)關(guān)系、教學(xué)設(shè)計中對概念的注釋是:表示實數(shù)的點都在實軸上,表示純虛數(shù)的點都在虛軸上,表示虛數(shù)的點在四個象限或虛軸上,表示實數(shù)的點為原點、經(jīng)過思考,修改:表示實數(shù)的點都在實軸上、實軸上的點表示全體實數(shù);表示純虛數(shù)的點都在虛軸上、虛軸上的點表示全體純虛數(shù)與實數(shù);表示虛數(shù)的點不在實軸上;實數(shù)與原點一一對應(yīng)。

 。ㄈ├}體驗

  本環(huán)節(jié)通過三個例題體驗,落實本課時的教學(xué)重點之一:復(fù)數(shù)的坐標(biāo)表示:點表示;突破本課時的教學(xué)難點:復(fù)數(shù)的代數(shù)表示、點表示及向量表示之間的互相轉(zhuǎn)化、例題1對課本例題作了改編,此例題的設(shè)計意圖為從復(fù)平面上的點出發(fā),去表示對應(yīng)的復(fù)數(shù),并且蘊含了計數(shù)原理中的乘法原理、值得一提的是,在課堂教學(xué)實施過程中,學(xué)生很清晰地建立起了兩者之間的轉(zhuǎn)化關(guān)系,并且使用了乘法原理、例題2的設(shè)計意圖是從復(fù)數(shù)出發(fā)去在復(fù)平面上表示對應(yīng)的點,而例題3的設(shè)計意圖是從單個復(fù)數(shù)與其在復(fù)平面上的對應(yīng)點之間的轉(zhuǎn)化到兩個復(fù)數(shù)與其在復(fù)平面上對應(yīng)點之間的互相轉(zhuǎn)化、例題2與例題3的設(shè)計符合學(xué)生的認知規(guī)律,但是在教學(xué)過程中沒有配以圖形來幫助學(xué)生理解,這是整個教學(xué)過程中的最大不足。

 。ㄋ模└拍钐嵘

  本環(huán)節(jié)繼復(fù)數(shù)在復(fù)平面上的點表示之后,給出復(fù)數(shù)的向量表示,呈現(xiàn)了完整的`復(fù)數(shù)的坐標(biāo)表示、學(xué)生已經(jīng)建構(gòu)起復(fù)數(shù)集中的復(fù)數(shù)與復(fù)平面上的點之間的一一對應(yīng)關(guān)系,結(jié)合他們的最近發(fā)展區(qū):建立了直角坐標(biāo)系的平面中的任意點均與唯一的位置向量一一對應(yīng),從而較為順利地架構(gòu)起復(fù)數(shù)與向量的一一對應(yīng)關(guān)系、設(shè)計的例題是由筆者改編的,整合了向量與復(fù)數(shù)、點與復(fù)數(shù)以及向量與點之間的互相轉(zhuǎn)化,鞏固三者之間的一一對應(yīng)關(guān)系、值得一提的是,設(shè)計的第3小問具有開放性,啟發(fā)學(xué)生去探究由向量加法的坐標(biāo)表示引出復(fù)數(shù)加法法則,在課堂教學(xué)實踐中,已有學(xué)生產(chǎn)生這樣的思考。

  在之后的教研組研評課中,老師們給出了對這節(jié)課的認可與中肯的建議,讓筆者受益匪淺,筆者經(jīng)過思考已經(jīng)在上文中的各環(huán)節(jié)修改處得以體現(xiàn)落實、不過仍然有一點困惑,有老師提出甚至筆者備課時也有這樣的猶豫:本課時是否將下一課時“復(fù)數(shù)的!币徊⒔o出、筆者在不斷思考教材分割成兩課時的用意,結(jié)合試講與上課的兩次實踐也說明,筆者所在學(xué)校的學(xué)生更適合這樣的分割,第一課時讓學(xué)生從不同角度感受復(fù)數(shù),第二課時用模來鞏固深化復(fù)數(shù)的坐標(biāo)表示、本課時的課題是復(fù)數(shù)的坐標(biāo)表示,蘊含了點坐標(biāo)表示與向量坐標(biāo)表示兩塊,第一課時先打開認識的視角,第二課時通過模來深入體驗、

  當(dāng)然教無定法,根據(jù)學(xué)情、因材施教,在理解教材設(shè)計意圖的基礎(chǔ)上對教材進行科學(xué)合理的改編也是很有必要的。

  復(fù)數(shù)的概念教案 2

  教學(xué)目標(biāo):

  1.了解復(fù)數(shù)的幾何意義,會用復(fù)平面內(nèi)的點和向量來表示復(fù)數(shù);了解復(fù)數(shù)代數(shù)形式的加、減運算的幾何意義.

  2.通過建立復(fù)平面上的點與復(fù)數(shù)的一一對應(yīng)關(guān)系,自主探索復(fù)數(shù)加減法的幾何意義.

  教學(xué)重點:

  復(fù)數(shù)的幾何意義,復(fù)數(shù)加減法的幾何意義.

  教學(xué)難點:

  復(fù)數(shù)加減法的幾何意義.

  教學(xué)過程:

  一 、問題情境

  我們知道,實數(shù)與數(shù)軸上的點是一一對應(yīng)的,實數(shù)可以用數(shù)軸上的點來表示.那么,復(fù)數(shù)是否也能用點來表示呢?

  二、學(xué)生活動

  問題1 任何一個復(fù)數(shù)a+bi都可以由一個有序?qū)崝?shù)對(a,b)惟一確定,而有序?qū)崝?shù)對(a,b)與平面直角坐標(biāo)系中的點是一一對應(yīng)的,那么我們怎樣用平面上的點來表示復(fù)數(shù)呢?

  問題2 平面直角坐標(biāo)系中的點A與以原點O為起點,A為終點的向量是一一對應(yīng)的,那么復(fù)數(shù)能用平面向量表示嗎?

  問題3 任何一個實數(shù)都有絕對值,它表示數(shù)軸上與這個實數(shù)對應(yīng)的點到原點的距離.任何一個向量都有模,它表示向量的長度,那么相應(yīng)的,我們可以給出復(fù)數(shù)的模(絕對值)的概念嗎?它又有什么幾何意義呢?

  問題4 復(fù)數(shù)可以用復(fù)平面的向量來表示,那么,復(fù)數(shù)的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個復(fù)數(shù)差的模有什么幾何意義?

  三、建構(gòu)數(shù)學(xué)

  1.復(fù)數(shù)的幾何意義:在平面直角坐標(biāo)系中,以復(fù)數(shù)a+bi的實部a為橫坐標(biāo),虛部b為縱坐標(biāo)就確定了點Z(a,b),我們可以用點Z(a,b)來表示復(fù)數(shù)a+bi,這就是復(fù)數(shù)的幾何意義.

  2.復(fù)平面:建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面.其中x軸為實軸,y軸為虛軸.實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù).

  3.因為復(fù)平面上的點Z(a,b)與以原點O為起點、Z為終點的向量一一對應(yīng),所以我們也可以用向量來表示復(fù)數(shù)z=a+bi,這也是復(fù)數(shù)的幾何意義.

  6.復(fù)數(shù)加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個復(fù)數(shù)差的模就是復(fù)平面內(nèi)與這兩個復(fù)數(shù)對應(yīng)的兩點間的距離.同時,復(fù)數(shù)加減法的法則與平面向量加減法的坐標(biāo)形式也是完全一致的

  四、數(shù)學(xué)應(yīng)用

  例1 在復(fù)平面內(nèi),分別用點和向量表示下列復(fù)數(shù)4,2+i,-i,-1+3i,3-2i.

  練習(xí) 課本P123練習(xí)第3,4題(口答).

  思考

  1.復(fù)平面內(nèi),表示一對共軛虛數(shù)的.兩個點具有怎樣的位置關(guān)系?

  2.如果復(fù)平面內(nèi)表示兩個虛數(shù)的點關(guān)于原點對稱,那么它們的實部和虛部分別滿足什么關(guān)系?

  3.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)是純虛數(shù)”的__________條件.

  4.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)所對應(yīng)的點在虛軸上”的_____條件.

  例2 已知復(fù)數(shù)z=(m2+m-6)+(m2+m-2)i在復(fù)平面內(nèi)所對應(yīng)的點位于第二象限,求實數(shù)m允許的取值范圍.

  例3 已知復(fù)數(shù)z1=3+4i,z2=-1+5i,試比較它們模的大小.

  思考 任意兩個復(fù)數(shù)都可以比較大小嗎?

  例4 設(shè)z∈C,滿足下列條件的點Z的集合是什么圖形?

  (1)│z│=2;(2)2<│z│<3.

  變式:課本P124習(xí)題3.3第6題.

  五、要點歸納與方法小結(jié)

  本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1.復(fù)數(shù)的幾何意義.

  2.復(fù)數(shù)加減法的幾何意義.

  3.數(shù)形結(jié)合的思想方法.

  復(fù)數(shù)的概念教案 3

  教學(xué)目標(biāo):

  1、掌握復(fù)數(shù)的加減法及乘法運算法則及意義;理解共軛復(fù)數(shù)的概念。

  2、理解并掌握實數(shù)進行四則運算的規(guī)律。

  教學(xué)重點:

  復(fù)數(shù)乘法運算

  教學(xué)難點:

  復(fù)數(shù)運算法則在計算中的熟練應(yīng)用

  教學(xué)方法:

  類比探究法

  教學(xué)過程:

  復(fù)習(xí)復(fù)數(shù)的定義,復(fù)數(shù)的分類及復(fù)數(shù)相等的充要條件等上節(jié)課所學(xué)內(nèi)容

  一、問題情境

  問題1:化簡:,類比你能計算嗎?

  問題2:化簡:多項式,類比你能計算嗎?

  問題3:兩個復(fù)數(shù)a+bi,a-bi有什么聯(lián)系?

  二、學(xué)生活動

  1、由多項式的加法類比猜想=1+4i,進而猜想。若,根據(jù)復(fù)數(shù)相等的定義,得?

  2、由多項式的乘法類比猜想(2+3i)(-1+i)=-5-i,進而猜想(a+bi)(c+di)=(ac-bd)+(bc+ad)i。

  3、兩個復(fù)數(shù)a+bi,a-bi實部相等,虛部互為相反數(shù)。

  三、建構(gòu)數(shù)學(xué)

  復(fù)數(shù)z1=a+bi,z2=c+di

  復(fù)數(shù)和的定義:z1+z2=(a+c)+(b+d)i

  復(fù)數(shù)差的定義:z1-z2=(a-c)+(b-d)i

  復(fù)數(shù)積的定義:z1z2=(ac-bd)+(bc+ad)i

  性質(zhì):z2z1=z1z2;(z1z2)z3=z1(z2z3);z1(z2+z3)=z1z2+z1z3

  共軛復(fù)數(shù):與互為共軛復(fù)數(shù);實數(shù)的共軛復(fù)數(shù)是它本身

  四、數(shù)學(xué)應(yīng)用

  解a2+b2

  思考1當(dāng)a>0時,方程x2+a=0的.根是什么?

  解x=±i

  思考2設(shè)x,y∈R,在復(fù)數(shù)集內(nèi),能將x2+y2分解因式嗎?

  解x2+y2=(x+yi)(x-yi)

  五、鞏固練習(xí)

  課本P115練習(xí)第3,4,5題。

  六、拓展訓(xùn)練

  例4已知復(fù)數(shù)z滿足:求復(fù)數(shù)z?

  七、要點歸納與方法小結(jié):

  本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1、復(fù)數(shù)的加減法法則和運算律。

  2、復(fù)數(shù)的乘法法則和運算律。

  3、共軛復(fù)數(shù)的有關(guān)概念。

【復(fù)數(shù)的概念教案】相關(guān)文章:

《函數(shù)的概念》教案(精選27篇)10-07

向量的概念及表示教學(xué)教案10-13

英語復(fù)數(shù)形式09-29

高中數(shù)學(xué)教案_等差數(shù)列的概念01-03

新概念青少版1b教案(精選10篇)01-21

大魚抱小魚知道大與小的概念中班數(shù)學(xué)教案12-19

“100”萬的概念小學(xué)作文02-27

新概念學(xué)習(xí)方法08-22

古希臘哲學(xué)中靈魂概念的發(fā)展06-09