初中數(shù)學的教學設計
作為一名老師,時常要開展教學設計的準備工作,借助教學設計可以提高教學效率和教學質(zhì)量。教學設計應該怎么寫才好呢?下面是小編精心整理的初中數(shù)學的教學設計,僅供參考,歡迎大家閱讀。

初中數(shù)學的教學設計1
教育改革的關鍵在于教師觀念的轉變,現(xiàn)代教育理論告訴我們:教師的職責現(xiàn)在已經(jīng)越來越少地傳授知識,而是越來越多地鼓勵、思考……將越來越成為一位顧問、一位交流意見的參加者、一位幫助發(fā)現(xiàn)而不是拿出現(xiàn)成真理的人,必須拿出更多的時間和精力去從事那些有效果的和有創(chuàng)造性的活動:互相影響、討論、激勵、了解、鼓舞。這說明了一個道理:教師的地位發(fā)生了根本性的變化,不再僅僅是知識的傳授者,還要確定“以人為本”的觀念,把課堂教學看作自己也是學生人生中的一段激蕩的生命經(jīng)歷,鼓勵、激發(fā)學生去不斷探索,把學生的“發(fā)現(xiàn)”與“創(chuàng)造”視為最有價值的勞動成果,教師與學生平等地對話,與他們共同感悟思潮的跌宕涌動。我想從三個方面談談自己在教學時的一些認識:
一、聯(lián)系生活、感知數(shù)學
“數(shù)學課程不僅要考慮數(shù)學自身的特點,而且應遵循學生學習數(shù)學的心理規(guī)律,強調(diào)從學生已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型進行解釋與應用的過程。”這就要求我們遵循學生的思維規(guī)律,在實際問題和數(shù)學模型之間架起一座橋梁,讓學生在不知不覺中走進數(shù)學、感知數(shù)學。數(shù)學來源于生活并服務于生活,主體(學生)在思考問題時,既符合自身的認知規(guī)律,又有直覺洞察、直觀猜想、合理歸納與活動思維過程,有利于提高自己對數(shù)學的認識。
二、身臨其境,探索規(guī)律
“數(shù)學教學活動必須建立在學生的'認識發(fā)展水平和已有的知識經(jīng)驗上,教師應激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會。
在教學時教師應根據(jù)知識的內(nèi)在結構和學生的學習規(guī)律,提供現(xiàn)象和問題,創(chuàng)設思維情境,引導學生主動參與,進行觀察、思考、探索。這樣有利于激發(fā)學生解決問題的熱情,提升學生的學習水平。比如在探究一元二次方程的根與系數(shù)的關系時,我們可以按下列步驟來創(chuàng)設情境。
1.求三個一元二次方程的兩根之和與兩根之積。一般來說學生都是先把方程的根求出來,然后計算,學生可能體會不到什么,此時課堂氣氛比較平穩(wěn)。
2.求一元二次方程的兩根之和與兩根之積,這時很多學生會感到很繁,怕動手計算,課堂出現(xiàn)沉悶現(xiàn)象。此時教師立即口答出答案,學生就會感覺到很驚奇,為之一振,進而產(chǎn)生疑問:“老師怎么會看出答案?這里會不會有規(guī)律?”課堂出現(xiàn)竊竊私語,激活了學生的思維,活躍了課堂氣氛。
3.提出問題:你能根據(jù)你開始的計算和老師的結論觀察出一元二次方程的根與系數(shù)之間的關系嗎?學生們躍躍欲試,開始投入到觀察、思考、探索中去。
4.提出問題:你敢肯定你所猜測到的結論是正確的嗎?再一次激發(fā)學生的斗志,使他們敢于說理、敢于證明,給予他們充分展示自己才華的機會。
三、由點到面,觸類旁通
復習不是簡單的知識重復,而是一個再認識、再提高的過程,復習中的最大矛盾是時間短、內(nèi)容多、要求高。復習既要做到突出重點、抓住典型,又能在高度概括中深刻揭示知識的內(nèi)在聯(lián)系,讓學生在掌握規(guī)律中理解、記憶、熟練、提高。比如在復習一元二次方程根的判別式和根與系數(shù)的關系時,可以把一元二次方程根的判別式、根與系數(shù)的關系和二次函數(shù)的有關知識相聯(lián)系,根的判別式可以作為判別二次函數(shù)的圖像與x軸的交點個數(shù)的依據(jù):當△>0時,拋物線與x軸有兩個不同的交點;當△<0時,拋物線與x軸沒有交點;當△=0時,拋物線與x軸只有一個交點即頂點。如果拋物線與x軸有兩個不同的交點,用根與系數(shù)的關系可以求拋物線與x軸的兩個交點之間的距離,可以判別拋物線與x軸交點的位置(交點是在坐標原點的左邊還是在坐標原點的右邊)等等。這樣在復習過程中把知識拓一拓、伸一伸,能激起學生思維的火花、學習的積極性,培養(yǎng)學生運用知識提高分析問題和解決問題的能力。
總之,課堂教學面對的是獨立、有個性、有思維的學生,課堂教學設計應適應學生的發(fā)展,應隨“學情”的變化而變化。課堂教學設計的成效如何,完全取決于教師對教材的理解、對學生情況的了解。只有教師具備“以學生為本”的教學理念,才能一切從學生實際出發(fā)、一切為學生考慮,才能真正做到教學服務于學生,實現(xiàn)“不同的人在數(shù)學上得到不同的發(fā)展”。
初中數(shù)學的教學設計2
現(xiàn)代教學論研究指出,從本質(zhì)上講,學生學習的根本原因是問題。在數(shù)學課堂教學中,教師可根據(jù)不同的教學內(nèi)容,圍繞不同的教學目標,設計出符合學生實際的教學問題,圍繞所設計的問題開展教學活動。這樣,在課堂教學環(huán)節(jié)中,問題該怎樣設計?圍繞問題該怎樣進行教學,才能使教學效率得以提高?這是擺在我們面前急需解決的問題。
本文將結合自己的教學實踐,就問題設計的策略及反思等方面談談自己的看法。
一、注重問題情境的創(chuàng)設
著名數(shù)學家費賴登塔爾認為:“數(shù)學源于現(xiàn)實又寓于現(xiàn)實,數(shù)學教學應從學生所接觸的客觀實際中提出問題,然后升華為數(shù)學概念、運算法則或數(shù)學思想!边@一觀念既反映了數(shù)學的本質(zhì),同時說明了在數(shù)學課堂教學中創(chuàng)設問題情境的重要性。比如,在《有理數(shù)的加法》一節(jié)的教學導入時,我首先出示了一周來本班的積分統(tǒng)計表(表中的得分用正數(shù)表示,失分用負數(shù)表示,)讓學生觀察:
星期 一 二 三 四 五 六 合計
積分 +3 -2 -4 -2 +2 +4
然后提出問題:“誰能幫我們班算出這一周的總積分呢?”結果我發(fā)現(xiàn)大多數(shù)同學能用“抵消”的方法統(tǒng)計出這一周本班的總積分。然后我出了一道算式題:“(+3)+(-2)+(-4)+(-2)=?”發(fā)現(xiàn)學生不知道該怎樣算。當學生產(chǎn)生這樣的認知沖突時我便引入了本節(jié)課要學習的內(nèi)容,最后我用表中的數(shù)據(jù)分成了幾種類型,如正數(shù)加正數(shù)、負數(shù)加負數(shù)、正數(shù)加負數(shù)等,展開新知學習,教學效果較以前有明顯改觀。
本節(jié)課成功之處在于:
。1)導入的情境問題貼近學生的現(xiàn)實,調(diào)動了學生的積極性。
。2)情境問題為后面的教學埋下了伏筆,引發(fā)了學生的認知沖突。當然,情境問題的創(chuàng)設不當,會直接影響教學。比如,在《函數(shù)》一節(jié)的教學時,我用游樂園中的摩天輪引入,當我提出問題:“同學們,當你坐在摩天輪上,隨著時間的變化,你離開地面的高度是如何變化的?”我發(fā)現(xiàn)學生幾乎沒有反應,只是偶爾聽到:“摩天輪?”“很危險……”本來是一個很典型的函數(shù)問題,只因為農(nóng)村學生對該情境的認識模糊,一時沒有進入到虛擬情境中來,導致課堂開端出現(xiàn)“僵局”,也影響了后面的教學工作的勝利開展。
2、教學重點、難點處的問題設計
初中數(shù)學課堂教學中重點與難點的處理將直接影響教學效果。通過設計好的問題串可以強化重點與突破難點。例如,《結識拋物線》一節(jié)的教學重點就是做二次函數(shù)y=x2的圖像并根據(jù)圖像認識和理解函數(shù)的性質(zhì)。而作圖過程又是一個難點問題,要從所畫的圖像中發(fā)現(xiàn)并歸納性質(zhì),首先得畫出較準確的函數(shù)圖像。在學生畫圖像的過程中,我抓住學生的幾種錯誤畫法提出了三個問題讓學生討論交流:
(1)根據(jù)你畫的圖像,給自變量x任取一個值,函數(shù)y有唯一的值與它對應嗎?
(2)自變量x的范圍是什么?
(3)在0 。4)部分同學經(jīng)過對x的小范圍內(nèi)的取值、描點與連線之后觀察到了所畫的圖像是曲線型的,但是還有部分學生就是體驗不到這種形狀。在這種情況下,我用計算機演示,當所描出的點比較密集時所連的線是曲線而不是直線段,這樣才消除了學生的一些錯誤認識。在隨后的觀察圖像歸納性質(zhì)的探索與交流活動中,學生樂于探索,主動交流,積極發(fā)表自己的想法,根據(jù)圖像歸納出了好幾條性質(zhì)。這樣,不但使重點得以突出、難點得到突破,而且發(fā)展了學生的思維。 3、例題或課堂練習中的問題設計 例題教學具有及時鞏固知識和靈活運用知識的雙重功能,隨堂練習是檢查學生的數(shù)學學習效果和培養(yǎng)學生思維的有效手段之一。數(shù)學課堂教學中,教師通過優(yōu)選例題,精心設計層次分明的練習,能夠讓學生以積極的態(tài)度去思考并解決問題,獲得問題解決的成就感和快樂感。例如筆者在《反比例函數(shù)的圖像與性質(zhì)》一節(jié)的教學中設計了一道這樣的問題:已知A(-2,y1)、B(-1,y2)、C(2,y3)三點都在反比例函數(shù)y=k/x(k>0)圖像上,(1)比較y1、y2、y3的大小關系。(2)若D(a,y1)、E(b,y2)、F(c,y3)三點也在反比例函數(shù)y=k/x(k>0)的圖像上,其中a0判斷y1、y2、y3的大小關系。教學中我發(fā)現(xiàn)多數(shù)學生對問題(1)采用了直接代入計算的方法得到結果,對問題(2)顯然用代入法難以得到結果,這時,我讓學生小組討論來解決。經(jīng)過討論后,學生A回答:“因為k>0時,反比例函數(shù)y隨x的'增大而減小,而a 4、在學習反思中的問題設計 初中學生學習數(shù)學的方法相對欠缺,學生“重結論,輕過程”的現(xiàn)象較普遍,對學習結果的反思意識淡薄,自我評價不徹底,做錯的題目一錯再錯。作為教師,在平時的教學中要注重引導,徹底分析錯因,讓學生在錯題中有反思的機會。例如,在一元一次方程的教學中,我發(fā)現(xiàn)學生解含有分母的方程時很容易出錯,針對學生做錯的題目,我設計了如的表格: 通過引導學生對錯因徹底分析與校正,學生明白了產(chǎn)生錯誤的真正原因是什么,認識到了自己的不足。然后我出了幾道解方程的練習,結果發(fā)現(xiàn),學生確實重視了錯誤,效果明顯有所好轉。 總之,在數(shù)學教學中,教學問題的設計確實是一種學問,是一種藝術。要讓學生在實實在在的問題情境中去親歷體驗,在對問題的分析、探索與交流的過程中主動思考,與人分享成果,來體驗成功的快樂,增強他們的自信心。 隨著科學技術的發(fā)展,教育資源和教育需求也隨之增長和變化。我校進行了初中數(shù)學分層教學課題研究,而分層次備課是搞好分層教學的關鍵,教師應在吃透教材、大綱的情況下,按照不同層次學生的實際情況,設計好分層次教學的全過程。本文將結合本人的教學經(jīng)驗,對分層教學教案設計進行初步探討。 1、教學目標的制定 制定具體可行的教學目標,先要分清哪些屬于共同目標,哪些屬于層次目標。并在知識與技能、過程與方法、情感態(tài)度與價值觀三個方面對不同層次的學生制定具體的要求。 2、教法學法的制定 制定教法學法應結合各層次學生的具體情況而定,如對A層學生少講多練,注重培養(yǎng)其自學能力;對B層學生,則實行精講精練,注重課本上的例題和習題的處理;對C層學生則要求要低,淺講多練,弄懂基本概念,掌握必要的基礎知識和基本技能。 3、教學重難點的制定 教學重難點的制定也應結合各層次學生的具體情況而定。 4、教學過程的設計 4.1情境導向,分層定標。教師以實例演示、設問等多種方法導入新課。要利用各種教學資料創(chuàng)設恰當?shù)膶W習情境為各層學生呈現(xiàn)適合于本層學生水平學習的內(nèi)容。 4.2分層練習,探討生疑。學生對照各自的目標分層自學。教師要鼓勵學生主動實踐,自覺地去發(fā)現(xiàn)問題、探討問題、解決問題。 4.3集體回授,異步釋疑!凹w回授”主要是針對人數(shù)占優(yōu)勢的B層學生,為解決具有共性的問題而組織的一種集體教學活動。教師為那些來不及解決的、不具有共性的問題分先后在層內(nèi)釋疑即“異步釋疑”。 5、練習與作業(yè)的設計 教師在設計練習或布置作業(yè)時要遵循“兩部三層”的原則!皟刹俊笔侵妇毩暬蜃鳂I(yè)分為必做題和選做題兩部分;“三層”是指教師在處理練習時要具有三個層次:第一層次為知識的直接運用和基礎練習;第二、三兩層次的題目為選做題,這樣可使A層學生有練習的'機會,B、C兩層學生也有充分發(fā)展的余地。 分層教學下教師不能再“拿一個教案用到底”,而要精心地設計課堂教學活動,針對不同層次的學生選擇恰當?shù)姆椒ê褪侄,了解學生的實際需求,關心他們的進步,改革課堂教學模式,充分調(diào)動學生的學習主動性,創(chuàng)造良好的課堂教學氛圍,形成成功的激勵機制,確保每一個學生都有所進步。 一、教材分析 反比例函數(shù)是初中階段所要學習的三種函數(shù)中的一種,是一類比較簡單但很重要的函數(shù),現(xiàn)實生活中充滿了反比例函數(shù)的例子。因此反比例函數(shù)的概念與意義的教學是基礎。 二、學情分析 由于之前學習過函數(shù),學生對函數(shù)概念已經(jīng)有了一定的認識能力,另外在前一章我們學習過分式的知識,因此為本節(jié)課的教學奠定的一定的基礎。 三、教學目標 知識目標:理解反比例函數(shù)意義;能夠根據(jù)已知條件確定反比例函數(shù)的表達式. 解決問題:能從實際問題中抽象出反比例函數(shù)并確定其表達式. 情感態(tài)度:讓學生經(jīng)歷從實際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實際. 四、教學重難點 重點:理解反比例函數(shù)意義,確定反比例函數(shù)的表達式. 難點:反比例函數(shù)表達式的確立. 五、教學過程 (1)京滬線鐵路全程為1463km,某次列車的`平均速度v(單位:km/h)隨此次列車的全程運行時間t(單位:h)的變化而變化; 。2)某住宅小區(qū)要種植一個面積1000m2的矩形草坪,草坪的長y(單 位:m)隨寬x(單位:m)的變化而變化。 請同學們寫出上述函數(shù)的表達式 14631000(2)y= tx k可知:形如y= (k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù),其中xx(1)v= 是自變量,y是函數(shù)。 此過程的目的在于讓學生從實際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實際. 由于是分式,當x=0時,分式無意義,所以x≠0。 當y= 中k=0時,y=0,函數(shù)y是一個常數(shù),通常我們把這樣的函數(shù)稱為常函數(shù)。此時y就不是反比例函數(shù)了。 舉例:下列屬于反比例函數(shù)的是 。1)y= (2)xy=10 (3)y=k-1x (4)y= - 此過程的目的是通過分析與練習讓學生更加了解反比例函數(shù)的概念 問已知y與x成反比例,y與x-1成反比例,y+1與x成反比例,y+1與x-1成反比例,將如何設其解析式(函數(shù)關系式) 已知y與x成反比例,則可設y與x的函數(shù)關系式為y= k x?1 k已知y+1與x成反比例,則可設y與x的函數(shù)關系式為y+1= xkxkxkxkx2x已知y與x-1成反比例,則可設y與x的函數(shù)關系式為y= 已知y+1與x-1成反比例,則可設y與x的函數(shù)關系式為y+1= k x?1此過程的目的是為了讓學生更深刻的了解反比例函數(shù)的概念,為以后在求函數(shù)解析式做好鋪墊。 例:已知y與x2反比例,并且當x=3時y=4 。1)求出y和x之間的函數(shù)解析式 。2)求當x=1.5時y的值 解析:因為y與x2反比例,所以設y?k,只要將k求出即可得到y(tǒng)x2 和x之間的函數(shù)解析式。之后引導學生書寫過程。能從實際問題中抽象出反比例函數(shù)并確定其表達式最后學生練習并布置作業(yè) 通過此環(huán)節(jié),加深對本節(jié)課所內(nèi)容的認識,以達到鞏固的目的。 六、評價與反思 本節(jié)課是在學生現(xiàn)有的認識基礎上進行講解,便于學生理解反比例函數(shù)的概念。而本節(jié)課的重點在于理解反比例函數(shù)意義,確定反比例函數(shù)的表達式.應該對這一方面的內(nèi)容多練習鞏固。 【初中數(shù)學的教學設計】相關文章: 初中數(shù)學教學設計05-30 初中數(shù)學教學設計04-30 初中數(shù)學角教學設計06-07 初中數(shù)學的教學設計理念04-10 初中數(shù)學角教學設計04-30 優(yōu)秀教學設計初中數(shù)學05-10 初中數(shù)學教學設計教案04-06 最新初中數(shù)學教學設計精選06-28 初中數(shù)學教學設計意圖07-25 初中數(shù)學的教學設計3
初中數(shù)學的教學設計4